Please login or sign up to post and edit reviews.
Pre-training language models for natural language processing problems - Publication Date |
- Jan 14, 2019
- Episode Duration |
- 00:27:35
When you build a model for natural language processing (NLP), such as a recurrent neural network, it helps a ton if you’re not starting from zero. In other words, if you can draw upon other datasets for building your understanding of word meanings, and then use your training dataset just for subject-specific refinements, you’ll get farther than just using your training dataset for everything. This idea of starting with some pre-trained resources has an analogue in computer vision, where initializations from ImageNet used for the first few layers of a CNN have become the new standard. There’s a similar progression under way in NLP, where simple(r) embeddings like word2vec are giving way to more advanced pre-processing methods that aim to capture more sophisticated understanding of word meanings, contexts, language structure, and more.
Relevant links:
https://thegradient.pub/nlp-imagenet/This episode could use a review!
This episode could use a review! Have anything to say about it? Share your thoughts using the button below.
Submit Review