This podcast currently has no reviews.
Submit ReviewThis podcast currently has no reviews.
Submit ReviewReal-time capabilities have quickly become an expectation for consumers. The complexity of providing those capabilities is still high, however, making it more difficult for small teams to compete. Meroxa was created to enable teams of all sizes to deliver real-time data applications. In this episode DeVaris Brown discusses the types of applications that are possible when teams don't have to manage the complex infrastructure necessary to support continuous data flows.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
Business intellingence has been chasing the promise of self-serve data for decades. As the capabilities of these systems has improved and become more accessible, the target of what self-serve means changes. With the availability of AI powered by large language models combined with the evolution of semantic layers, the team at Zenlytic have taken aim at this problem again. In this episode Paul Blankley and Ryan Janssen explore the power of natural language driven data exploration combined with semantic modeling that enables an intuitive way for everyone in the business to access the data that they need to succeed in their work.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
The customer data platform is a category of services that was developed early in the evolution of the current era of cloud services for data processing. When it was difficult to wire together the event collection, data modeling, reporting, and activation it made sense to buy monolithic products that handled every stage of the customer data lifecycle. Now that the data warehouse has taken center stage a new approach of composable customer data platforms is emerging. In this episode Darren Haken is joined by Tejas Manohar to discuss how Autotrader UK is addressing their customer data needs by building on top of their existing data stack.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
The promise of streaming data is that it allows you to react to new information as it happens, rather than introducing latency by batching records together. The peril is that building a robust and scalable streaming architecture is always more complicated and error-prone than you think it's going to be. After experiencing this unfortunate reality for themselves, Abhishek Chauhan and Ashish Kumar founded Grainite so that you don't have to suffer the same pain. In this episode they explain why streaming architectures are so challenging, how they have designed Grainite to be robust and scalable, and how you can start using it today to build your streaming data applications without all of the operational headache.
What are some of the most complex aspects of building streaming data applications in the absence of something like Grainite?
What are some of the commonalities that you see in the teams/organizations that find their way to Grainite?
What are some of the higher-order projects that teams are able to build when they are using Grainite as a starting point vs. where they would be spending effort on a fully managed streaming architecture?
Can you describe how Grainite is architected?
What does your internal build vs. buy process look like for identifying where to spend your engineering resources?
What is the process for getting Grainite set up and integrated into an organizations technical environment?
Once Grainite is running, can you describe the day 0 workflow of building an application or data flow?
What are the most interesting, innovative, or unexpected ways that you have seen Grainite used?
What are the most interesting, unexpected, or challenging lessons that you have learned while working on Grainite?
When is Grainite the wrong choice?
What do you have planned for the future of Grainite?
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
As with all aspects of technology, security is a critical element of data applications, and the different controls can be at cross purposes with productivity. In this episode Yoav Cohen from Satori shares his experiences as a practitioner in the space of data security and how to align with the needs of engineers and business users. He also explains why data security is distinct from application security and some methods for reducing the challenge of working across different data systems.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
With the rise of the web and digital business came the need to understand how customers are interacting with the products and services that are being sold. Product analytics has grown into its own category and brought with it several services with generational differences in how they approach the problem. NetSpring is a warehouse-native product analytics service that allows you to gain powerful insights into your customers and their needs by combining your event streams with the rest of your business data. In this episode Priyendra Deshwal explains how NetSpring is designed to empower your product and data teams to build and explore insights around your products in a streamlined and maintainable workflow.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
The ecosystem for data professionals has matured to the point that there are a large and growing number of distinct roles. With the scope and importance of data steadily increasing it is important for organizations to ensure that everyone is aligned and operating in a positive environment. To help facilitate the nascent conversation about what constitutes an effective and productive data culture, the team at Data Council have dedicated an entire conference track to the subject. In this episode Pete Soderling and Maggie Hays join the show to explore this topic and their experience preparing for the upcoming conference.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
There has been a lot of discussion about the practical application of data mesh and how to implement it in an organization. Jean-Georges Perrin was tasked with designing a new data platform implementation at PayPal and wound up building a data mesh. In this episode he shares that journey and the combination of technical and organizational challenges that he encountered in the process.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
Cloud data warehouses have unlocked a massive amount of innovation and investment in data applications, but they are still inherently limiting. Because of their complete ownership of your data they constrain the possibilities of what data you can store and how it can be used. Projects like Apache Iceberg provide a viable alternative in the form of data lakehouses that provide the scalability and flexibility of data lakes, combined with the ease of use and performance of data warehouses. Ryan Blue helped create the Iceberg project, and in this episode he rejoins the show to discuss how it has evolved and what he is doing in his new business Tabular to make it even easier to implement and maintain.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
This podcast could use a review! Have anything to say about it? Share your thoughts using the button below.
Submit Review