This episode currently has no reviews.
Submit ReviewMachine learning workflows have had a problem for a long time: taking a model from the prototyping step and putting it into production is not an easy task. A data scientist who is developing a model is often working with different tools, or a smaller data set, or different hardware than the environment which that
The post Tecton: Machine Learning Platform from Uber with Kevin Stumpf appeared first on Software Engineering Daily.
stumpf-394x394-1.jpg?resize=175%2C175&ssl=1" width="175" height="175">
Machine learning workflows have had a problem for a long time: taking a model from the prototyping step and putting it into production is not an easy task. A data scientist who is developing a model is often working with different tools, or a smaller data set, or different hardware than the environment which that model will be deployed to.
This problem existed at Uber just as it does at many other companies. Models were difficult to release, iterations were complicated, and collaboration between engineers could never reach a point that resembled a harmonious “DevOps”-like workflow. To address these problems, Uber developed an internal system called Michelangelo.
Some of the engineers working on Michelangelo within Uber realized that there was a business opportunity in taking the Michelangelo work and turning it into a product company. Thus, Tecton was born. Tecton is a machine learning platform focused on solving the same problems that existed within Uber. Kevin Stumpf is the CTO at Tecton, and he joins the show to talk about the machine learning problems of Uber, and his current work at Tecton.
Sponsorship inquiries: sponsor@softwareengineeringdaily.com
The post Tecton: Machine Learning Platform from Uber with Kevin Stumpf appeared first on Software Engineering Daily.
This episode currently has no reviews.
Submit ReviewThis episode could use a review! Have anything to say about it? Share your thoughts using the button below.
Submit Review