In this episode of MLOps Live, Piotr is joined by Aurimas Griciūnas, a Senior Solutions Architect at neptune.ai. Aurimas elaborates on the distinctions between machine learning (ML) platforms and data platform teams and the advantages of automating an ML stack. He also went over the process normalization requirements for streamlined teams from data platform and ML platform groups. Aurimas explains why data platforms are primarily concerned with displaying results, whereas ML platforms are centered on the frameworks and tooling that machine learning professionals use on a daily basis.
In this episode of MLOps Live, Piotr is joined by Aurimas Griciūnas, a Senior Solutions Architect at neptune.ai. Aurimas elaborates on the distinctions between machine learning (ML) platforms and data platform teams and the advantages of automating an ML stack. He also went over the process normalization requirements for streamlined teams from data platform and ML platform groups. Aurimas explains why data platforms are primarily concerned with displaying results, whereas ML platforms are centered on the frameworks and tooling that machine learning professionals use on a daily basis.
Subscribe to our YouTube channel to watch this episode!
Learn more about Aurimas Griciūnas and Piotr Niedzwiedz:
Previous guests include: Andy McMahon of NatWest Group, Jacopo Tagliabue of Coveo, Adam Sroka of Origami, Amber Roberts of Arize AI, Michal Tadeusiak of deepsense.ai, Danny Leybzon of WhyLabs, Kyle Morris of Banana ML, Federico Bianchi of Università Bocconi, Mateusz Opala of Brainly, Kuba Cieslik of tuul.ai, Adam Becker of Telepath.io and Fernando Rejon & Jakub Zavrel of Zeta Alpha Vector. Check out our three most downloaded episodes: