This episode currently has no reviews.
Submit ReviewMircea Neagovici is VP, AI and Research at UiPath, where his team works on task mining and other ways of combining robotic process automation (RPA) with machine learning for their B2B products.
Mircea and Lukas talk about the challenges of allowing customers to fine-tune their models, the trade-offs between traditional ML and more complex deep learning models, and how Mircea transitioned from a more traditional software engineering role to running a machine learning organization.
Show notes (transcript and links): http://wandb.me/gd-mircea-neagovici
---
⏳ Timestamps:
0:00 Intro
1:05 Robotic Process Automation (RPA)
4:20 RPA and machine learning at UiPath
8:20 Fine-tuning & PyTorch vs TensorFlow
14:50 Monitoring models in production
16:33 Task mining
22:37 Trade-offs in ML models
29:45 Transitioning from software engineering to ML
34:02 ML teams vs engineering teams
40:41 Spending more time on data
43:55 The organizational machinery behind ML models
45:57 Outro
---
Connect with Mircea:
📍 LinkedIn: https://www.linkedin.com/in/mirceaneagovici/
📍 Careers at UiPath: https://www.uipath.com/company/careers
---
💬 Host: Lukas Biewald
📹 Producers: Cayla Sharp, Angelica Pan, Sanyam Bhutani, Lavanya Shukla
This episode currently has no reviews.
Submit ReviewThis episode could use a review! Have anything to say about it? Share your thoughts using the button below.
Submit Review