Building a curriculum for educating data scientists: Interview with Prof. Xiao-Li Meng
Media Type |
audio
Categories Via RSS |
Technology
Publication Date |
Feb 02, 2020
Episode Duration |
00:31:36
As demand for data scientists grows, and it remains as relevant as ever that practicing data scientists have a solid methodological and technical foundation for their work, higher education institutions are coming to terms with what’s required to educate the next cohorts of data scientists. The heterogeneity and speed of the field makes it challenging for even the most talented and dedicated educators to know what a data science education “should” look like. This doesn’t faze Xiao-Li Meng, Professor of Statistics at Harvard University and founding Editor-in-Chief of the Harvard Data Science Review. He’s our interview guest in this episode, talking about the pedagogically distinct classes of data science and how he thinks about designing curricula for making anyone more data literate. From new initiatives in data science to dealing with data science FOMO, this wide-ranging conversation with a leading scholar gives us a lot to think about. Relevant links: https://hdsr.mitpress.mit.edu/

This episode currently has no reviews.

Submit Review
This episode could use a review!

This episode could use a review! Have anything to say about it? Share your thoughts using the button below.

Submit Review