Please login or sign up to post and edit reviews.
Bringing Business Analytics To End Users With GoodData
Publisher |
Tobias Macey
Media Type |
audio
Podknife tags |
Data Science
Interview
Technology
Categories Via RSS |
Technology
Publication Date |
Jun 23, 2020
Episode Duration |
00:52:24

Summary

The majority of analytics platforms are focused on use internal to an organization by business stakeholders. As the availability of data increases and overall literacy in how to interpret it and take action improves there is a growing need to bring business intelligence use cases to a broader audience. GoodData is a platform focused on simplifying the work of bringing data to employees and end users. In this episode Sheila Jung and Philip Farr discuss how the GoodData platform is being used, how it is architected to provide scalable and performant analytics, and how it integrates into customer’s data platforms. This was an interesting conversation about a different approach to business intelligence and the importance of expanded access to data.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise.
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • GoodData is revolutionizing the way in which companies provide analytics to their customers and partners. Start now with GoodData Free that makes our self-service analytics platform available to you at no cost. Register today at dataengineeringpodcast.com/gooddata
  • Your host is Tobias Macey and today I’m interviewing Sheila Jung and Philip Farr about how GoodData is building a platform that lets you share your analytics outside the boundaries of your organization

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by describing what you are building at GoodData and some of its origin story?
  • The business intelligence market has been around for decades now and there are dozens of options with different areas of focus. What are the factors that might motivate me to choose GoodData over the other contenders in the space?
  • What are the use cases and industries that you focus on supporting with GoodData?
  • How has the market of business intelligence tools evolved in recent years?
    • What are the contributing trends in technology and business use cases that are driving that change?
  • What are some of the ways that your customers are embedding analytics into their own products?
  • What are the differences in processing and serving capabilities between an internally used business intelligence tool, and one that is used for embedding into externally used systems?
    • What unique challenges are posed by the embedded analytics use case?
    • How do you approach topics such as security, access control, and latency in a multitenant analytics platform?
  • What guidelines have you found to be most useful when addressing the concerns of accuracy and interpretability of the data being presented?
  • How is the GoodData platform architected?
    • What are the complexities that you have had to design around in order to provide performant access to your customers’ data sources in an interactive use case?
    • What are the off-the-shelf components that you have been able to integrate into the platform, and what are the driving factors for solutions that have been built specifically for the GoodData use case?
  • What is the process for your users to integrate GoodData into their existing data platform?
  • What is the workflow for someone building a data product in GoodData?
  • How does GoodData manage the lifecycle of the data that your customers are presenting to their end users?
  • How does GoodData integrate into the customer development lifecycle?
  • What are some of the most interesting, unexpected, or challenging lessons that you have learned while working on and with GoodData?
  • Can you give an overview of the MAQL (Multi-Dimension Analytical Query Language) dialect that you use in GoodData and contrast it with SQL?
    • What are the benefits and additional functionality that MAQL provides?
  • When is GoodData the wrong choice?
  • What is on the roadmap for the future of GoodData?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary

The majority of analytics platforms are focused on use internal to an organization by business stakeholders. As the availability of data increases and overall literacy in how to interpret it and take action improves there is a growing need to bring business intelligence use cases to a broader audience. GoodData is a platform focused on simplifying the work of bringing data to employees and end users. In this episode Sheila Jung and Philip Farr discuss how the GoodData platform is being used, how it is architected to provide scalable and performant analytics, and how it integrates into customer’s data platforms. This was an interesting conversation about a different approach to business intelligence and the importance of expanded access to data.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise.
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • GoodData is revolutionizing the way in which companies provide analytics to their customers and partners. Start now with GoodData Free that makes our self-service analytics platform available to you at no cost. Register today at dataengineeringpodcast.com/gooddata
  • Your host is Tobias Macey and today I’m interviewing Sheila Jung and Philip Farr about how GoodData is building a platform that lets you share your analytics outside the boundaries of your organization

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by describing what you are building at GoodData and some of its origin story?
  • The business intelligence market has been around for decades now and there are dozens of options with different areas of focus. What are the factors that might motivate me to choose GoodData over the other contenders in the space?
  • What are the use cases and industries that you focus on supporting with GoodData?
  • How has the market of business intelligence tools evolved in recent years?
    • What are the contributing trends in technology and business use cases that are driving that change?
  • What are some of the ways that your customers are embedding analytics into their own products?
  • What are the differences in processing and serving capabilities between an internally used business intelligence tool, and one that is used for embedding into externally used systems?
    • What unique challenges are posed by the embedded analytics use case?
    • How do you approach topics such as security, access control, and latency in a multitenant analytics platform?
  • What guidelines have you found to be most useful when addressing the concerns of accuracy and interpretability of the data being presented?
  • How is the GoodData platform architected?
    • What are the complexities that you have had to design around in order to provide performant access to your customers’ data sources in an interactive use case?
    • What are the off-the-shelf components that you have been able to integrate into the platform, and what are the driving factors for solutions that have been built specifically for the GoodData use case?
  • What is the process for your users to integrate GoodData into their existing data platform?
  • What is the workflow for someone building a data product in GoodData?
  • How does GoodData manage the lifecycle of the data that your customers are presenting to their end users?
  • How does GoodData integrate into the customer development lifecycle?
  • What are some of the most interesting, unexpected, or challenging lessons that you have learned while working on and with GoodData?
  • Can you give an overview of the MAQL (Multi-Dimension Analytical Query Language) dialect that you use in GoodData and contrast it with SQL?
    • What are the benefits and additional functionality that MAQL provides?
  • When is GoodData the wrong choice?
  • What is on the roadmap for the future of GoodData?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary

The majority of analytics platforms are focused on use internal to an organization by business stakeholders. As the availability of data increases and overall literacy in how to interpret it and take action improves there is a growing need to bring business intelligence use cases to a broader audience. GoodData is a platform focused on simplifying the work of bringing data to employees and end users. In this episode Sheila Jung and Philip Farr discuss how the GoodData platform is being used, how it is architected to provide scalable and performant analytics, and how it integrates into customer’s data platforms. This was an interesting conversation about a different approach to business intelligence and the importance of expanded access to data.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise.
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • GoodData is revolutionizing the way in which companies provide analytics to their customers and partners. Start now with GoodData Free that makes our self-service analytics platform available to you at no cost. Register today at dataengineeringpodcast.com/gooddata
  • Your host is Tobias Macey and today I’m interviewing Sheila Jung and Philip Farr about how GoodData is building a platform that lets you share your analytics outside the boundaries of your organization

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by describing what you are building at GoodData and some of its origin story?
  • The business intelligence market has been around for decades now and there are dozens of options with different areas of focus. What are the factors that might motivate me to choose GoodData over the other contenders in the space?
  • What are the use cases and industries that you focus on supporting with GoodData?
  • How has the market of business intelligence tools evolved in recent years?
    • What are the contributing trends in technology and business use cases that are driving that change?
  • What are some of the ways that your customers are embedding analytics into their own products?
  • What are the differences in processing and serving capabilities between an internally used business intelligence tool, and one that is used for embedding into externally used systems?
    • What unique challenges are posed by the embedded analytics use case?
    • How do you approach topics such as security, access control, and latency in a multitenant analytics platform?
  • What guidelines have you found to be most useful when addressing the concerns of accuracy and interpretability of the data being presented?
  • How is the GoodData platform architected?
    • What are the complexities that you have had to design around in order to provide performant access to your customers’ data sources in an interactive use case?
    • What are the off-the-shelf components that you have been able to integrate into the platform, and what are the driving factors for solutions that have been built specifically for the GoodData use case?
  • What is the process for your users to integrate GoodData into their existing data platform?
  • What is the workflow for someone building a data product in GoodData?
  • How does GoodData manage the lifecycle of the data that your customers are presenting to their end users?
  • How does GoodData integrate into the customer development lifecycle?
  • What are some of the most interesting, unexpected, or challenging lessons that you have learned while working on and with GoodData?
  • Can you give an overview of the MAQL (Multi-Dimension Analytical Query Language) dialect that you use in GoodData and contrast it with SQL?
    • What are the benefits and additional functionality that MAQL provides?
  • When is GoodData the wrong choice?
  • What is on the roadmap for the future of GoodData?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

This episode currently has no reviews.

Submit Review
This episode could use a review!

This episode could use a review! Have anything to say about it? Share your thoughts using the button below.

Submit Review