BI 060 Michael Rescorla: Mind as Representation Machine
Podcast |
Brain Inspired
Publisher |
Paul Middlebrooks
Media Type |
audio
Categories Via RSS |
Education
Natural Sciences
Science
Technology
Publication Date |
Feb 11, 2020
Episode Duration |
01:36:03

Michael and I discuss the philosophy and a bit of history of mental representation including the computational theory of mind and the language of thought hypothesis, how science and philosophy interact, how representation relates to computation in brains and machines, levels of computational explanation, and we discuss some examples of representational approaches to mental processes like bayesian modeling.

Show notes:

Michael and I discuss the philosophy and a bit of history of mental representation including the computational theory of mind and the language of thought hypothesis, how science and philosophy interact, how representation relates to computation in brains and machines, levels of computational explanation, and we discuss some examples of representational approaches to mental processes like bayesian modeling. Show notes: Michael's website (with links to a ton of his publications). Science and PhilosophyWhy science needs philosophy by Laplane et al 2019.Why Cognitive Science Needs Philosophy and Vice Versa by Paul Thagard, 2009.Some of Michael's papers/articles we discuss or mention: The Computational Theory of Mind. Levels of Computational Explanation. Computational Modeling of the Mind: What Role for Mental Representation?From Ockham to Turing --- and Back Again. Talks: Predictive coding “debate” with Michael and a few other folks. An overview and history of the philosophy of representation. Books we mentioned: The Structure of Scientific Revolutions by Thomas Kuhn. Memory and the Computational Brain by Randy Gallistel and Adam King. Representation In Cognitive Science by Nicholas Shea. Types and Tokens: On Abstract Objects by Linda Wetzel. Probabilistic Robotics by Thrun, Burgard, and Fox.

Michael and I discuss the philosophy and a bit of history of mental representation including the computational theory of mind and the language of thought hypothesis, how science and philosophy interact, how representation relates to computation in brains and machines, levels of computational explanation, and we discuss some examples of representational approaches to mental processes like bayesian modeling.

Show notes:

This episode currently has no reviews.

Submit Review
This episode could use a review!

This episode could use a review! Have anything to say about it? Share your thoughts using the button below.

Submit Review