Applications of Variational Autoencoders and Bayesian Optimization with José Miguel Hernández Lobato - #510
Publisher |
Sam Charrington
Media Type |
audio
Categories Via RSS |
Tech News
Technology
Publication Date |
Aug 16, 2021
Episode Duration |
00:42:27
Today we’re joined by José Miguel Hernández-Lobato, a university lecturer in machine learning at the University of Cambridge. In our conversation with Miguel, we explore his work at the intersection of Bayesian learning and deep learning. We discuss how he’s been applying this to the field of molecular design and discovery via two different methods, with one paper searching for possible chemical reactions, and the other doing the same, but in 3D and in 3D space. We also discuss the challenges of sample efficiency, creating objective functions, and how those manifest themselves in these experiments, and how he integrated the Bayesian approach to RL problems. We also talk through a handful of other papers that Miguel has presented at recent conferences, which are all linked at twimlai.com/go/510.

This episode currently has no reviews.

Submit Review
This episode could use a review!

This episode could use a review! Have anything to say about it? Share your thoughts using the button below.

Submit Review