This episode currently has no reviews.
Submit ReviewData is the heart of AI. So, therefore doing things associated with your data is going to be critical for AI projects. This includes Data Preparation, Data Cleaning, Data Splitting, Data Multiplication, and Data Transformation.
In this episode of the AI Today podcast hosts Kathleen Walch and Ron Schmelzer define the terms above and explain why they are important for AI projects.
Data is the heart of AI. So, therefore doing things associated with your data is going to be critical for AI projects. This includes Data Preparation, Data Cleaning, Data Splitting, Data Multiplication, and Data Transformation.
In this episode of the AI Today podcast hosts Kathleen Walch and Ron Schmelzer define the terms above and explain why they are important for AI projects. Data Preparation is all the necessary activities that need to be performed on data to get the data ready to be used for an analytics or machine learning project. Data preparation includes aspects of data cleaning, data transformation, data wrangling, data augmentation, anonymization, and other actions to be performed on data. These are usually performed as part of a data engineering data pipeline. In this episode we explain how these terms relate to AI and why it's important to know about them.
Show Notes:
This episode currently has no reviews.
Submit ReviewThis episode could use a review! Have anything to say about it? Share your thoughts using the button below.
Submit Review