Please login or sign up to post and edit reviews.
Accelerating ML innovation at MLCommons
Publisher |
Changelog Media
Media Type |
audio
Categories Via RSS |
Software How-To
Tech News
Technology
Publication Date |
Jan 19, 2021
Episode Duration |
00:51:10
MLCommons launched in December 2020 as an open engineering consortium that seeks to accelerate machine learning innovation and broaden access to this critical technology for the public good. David Kanter, the executive director of MLCommons, joins us to discuss the launch and the ambitions of the organization. In particular we discuss the three pillars of the organization: Benchmarks and Metrics (e.g. MLPerf), Datasets and Models (e.g. People’s Speech), and Best Practices (e.g. MLCube).
MLCommons launched in December 2020 as an open engineering consortium that seeks to accelerate machine learning innovation and broaden access to this critical technology for the public good. David Kanter, the executive director of MLCommons, joins us to discuss the launch and the ambitions of the organization. In particular we discuss the three pillars of the organization: Benchmarks and Metrics (e.g. MLPerf), Datasets and Models (e.g. People’s Speech), and Best Practices (e.g. MLCube).

MLCommons launched in December 2020 as an open engineering consortium that seeks to accelerate machine learning innovation and broaden access to this critical technology for the public good. David Kanter, the executive director of MLCommons, joins us to discuss the launch and the ambitions of the organization.

In particular we discuss the three pillars of the organization: Benchmarks and Metrics (e.g. MLPerf), Datasets and Models (e.g. People’s Speech), and Best Practices (e.g. MLCube).

Leave us a comment

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Code-ish by Heroku – A podcast from the team at Heroku, exploring code, technology, tools, tips, and the life of the developer. Check out episode 98 and episode 99 for insights on the ethical and technical sides of deep fakes. Subscribe on Apple Podcasts and Spotify.
  • Changelog++ – You love our content and you want to take it to the next level by showing your support. We’ll take you closer to the metal with no ads, extended episodes, outtakes, bonus content, a deep discount in our merch store (soon), and more to come. Let’s do this!
  • Knowable – Learn from the world’s best minds, anytime, anywhere, and at your own pace through audio. Get unlimited access to every Knowable audio course right now. Click here to check it out and use code CHANGELOG for 20% off!

Featuring:

Show Notes:

Something missing or broken? ai-119.md">PRs welcome!

This episode currently has no reviews.

Submit Review
This episode could use a review!

This episode could use a review! Have anything to say about it? Share your thoughts using the button below.

Submit Review